
A Partitioning Deletion/Substitution/Addition
Algorithm for Creating Survival Risk Groups

Karen Lostritto
Yale University

Annette M. Molinaro
University of California, San Francisco

Stephen Weston
Yale University

Abstract

As an extension of the partDSA package (Molinaro, Lostritto, and Weston 2009), we
present the partDSA Survival package to accommodate survival outcomes. The algorith-
mic methodology of partDSA is described in Molinaro, Lostritto, and van der Laan (2010),
and the extension of partDSA to survival outcomes is described in Lostritto, Strawder-
man, and Molinaro (2011). PartDSA creates a piecewise constant model for predicting
an outcome of interest from a complex interaction of covariates. This model consists of
"and/or" boolean statements on covariates such that each statement defines a group of
observations which are assigned a constant predicted value. The creation of a partDSA
model is guided by a specified loss function, and in the case of a survival outcome this
loss function must be modified to accommodate a censored outcome. The functionality of
partDSA for categorical and continuous outcomes is described in the partDSA vignette
and here we describe the new functionality for survival data.

Keywords: Recursive partitioning, Survival.

Copyright ©2011.

1. Introduction

The Partitioning Deletion/Substitution/Addition algorithm initiates with all observations in
a single group and splits and recombines observations in order to exhaustively search potential
models. A list of the best models of each size is created, and a cross-validation procedure is
employed to select the best model size.
The loss function plays an important role in the model creation process. The goal of min-
imizing a given loss function guides the choice of the best next step in the iterative model
generation process, the choice of the best predicted value, and ultimately the choice of the
best model size. In survival data, the outcome is a time to event but in medical studies,
many patients will not have experienced this event by the end of the study or they will have
dropped out of the study before experiencing the event. These patients will not have a time
to event, but rather a time last seen event-free. This time is recorded and these patients are
referred to as "censored". The outcome given to partDSA contains both a continuous time T
(either time to event or last time seen event free) and a binary censoring variable δ (where a
1 corresponds to a patient who has had the event and a 0 corresponds to a censored patient
who has not had the event). The Surv function in the Survival library creates a "survival"
outcome from T and δ as shown below:

2 partDSA

> library(survival)
> T=rexp(25)
> delta=sample(0:1,25,TRUE)
> y=Surv(T,delta)
> y

[1] 3.51053988 1.13332992 4.40231584 0.20994859+ 0.03438297
[6] 0.06510397 1.13203040 2.26991403 0.99997273+ 1.27837497

[11] 0.16362900 0.25547108 0.39722767+ 2.05143525 0.25816414+
[16] 0.64355832+ 0.69833530+ 0.42437436+ 3.40777688 1.12440296
[21] 2.44598777 0.80194972+ 0.23169519+ 0.61509761 0.04229423

In this guide, we will discuss two different partDSA options which allow for the application of
this algorithm to survival data. Both modifications make use of a weighting scheme applied
to the L2 loss function for continuous outcomes:

L(X,ψ) = (Y − ψ(W))2 (1)

As described in the partDSA vignette, continuous outcome data W1, ...,Wn represent the n
observations where W = (Y,X) such that Y is the outcome and X is a vector of p covariates,
X = (X1, ..., Xp) and ψ is the prediction rule. As described above, for survival data, if Y is the
time to event, this value is missing (censored) for some observations, requiring a modification
to the L2 loss function approach. The two modifications implemented in partDSA are the
IPCW weighting scheme and the Brier weighting scheme, both of which we demonstrate on
simulated data. Finally we present an example on the German Breast Cancer dataset.

2. IPCW Weighting Scheme
In the IPCW Weighting Scheme, only uncensored observations contribute directly to the loss
function. The contribution of each uncensored observation to the loss function is given a
weight, calculated using all of the observations. The details of this weight calculation are
described in Lostritto et al. (2011). The concept is that uncensored observations who were
likely to have been censored by their event time will be given a higher weight and uncensored
observations who were unlikely to have been censored by their event time will be given a
lower weight. These weights are calculated either with a Kaplan Meier estimate or a Cox
estimate. This choice can be specified in the wt.method parameter in DSA.control, which is
either set to "Cox" or "KM", with a default value of "KM". Using the "KM" option does not
take into account the covariate values when calculating the weights whereas the "Cox" option
calculates the weights based on the covariate values. In small sample sizes, it is safer to use
the "KM" option because there is less of a chance of running into errors in the coxph function,
but if there is informative censoring, it may be worthwhile to choose the "Cox" option. Both
options are shown below on a simulation study.

2.1. Simulation Code

In this code, a training set of size 250 and a test set of size 5000 were created. Five covariate
values were simulated where the first two determine the scale parameter and thus the time

Karen Lostritto, Annette M. Molinaro, Stephen Weston 3

to event. The remaining three covariates are noise variables. Censoring times are simulated
from a uniform distribution in order to achieve a thirty percent censoring level. Survival times
are truncated at the 95th percentile. In Lostritto et al. (2011), this simulation corresponds
to multivariate simulation 1 with high signal. The low signal version uses values of 1 and 0.5
for the scale parameter instead of 5 and 0.5.

> library(VGAM)
> library(partDSA)
> set.seed(1)
> p=5
> tr.n=250
> ts.n=5000
> C_level=0.3
> x=matrix(NA,tr.n,p)
> for (j in 1:p){
+ x[,j]=sample(1:100,tr.n,replace=TRUE)
+ }
> x=data.frame(x)
> names(x)=c(paste("X",1:p,sep=""))
> x.test=matrix(NA,ts.n,p)
> for (j in 1:p){
+ x.test[,j]=sample(1:100,ts.n,replace=TRUE)
+ }
> x.test=data.frame(x.test)
> names(x.test)=c(paste("X",1:p,sep=""))
> scale=ifelse(x[,1]>50|x[,2]>75,5,.5)
> time=data.frame(rgpd(tr.n,0,scale,0))
> scale.test=ifelse(x.test[,1]>50|x.test[,2]>75,5,.5)
> time.test=(rgpd(ts.n,0,scale.test,0))
> group2=which(x[,1]>50|x[,2]>75)
> group1=c(1:tr.n)[-group2]
> level1=0
> level2=0
> cens.time=NULL
> while((abs(C_level-level1)>.02)|(abs(C_level-level2)>.02)){
+ cens1.time=runif(length(group1),0,1.25)
+ cens2.time=runif(length(group2),0,15)
+
+ cens1=apply(cbind(cens1.time,time[group1,]),1,which.min)-1
+ cens2=apply(cbind(cens2.time,time[group2,]),1,which.min)-1
+
+ level1=1-sum(cens1)/length(cens1)
+ level2=1-sum(cens2)/length(cens2)
+
+ }
> cens.time[group1]=cens1.time
> cens.time[group2]=cens2.time

4 partDSA

> y0=apply(cbind(cens.time,time),1,min)
> cens0=apply(cbind(cens.time,time),1,which.min)-1
> L = quantile(y0,.95)
> y = pmin(y0,L)
> cens = cens0
> cens[y0 > y] = 1
> y.new=y
> y=log(y)
> y.new.test <- time.test
> y.new.test <- pmin(y.new.test,L)
> y.test=log(y.new.test)
> cens.test=rep(1,ts.n)
> wt=rep(1,tr.n)
> wt.test=rep(1,ts.n)
> detach(package:VGAM)
> model.KM.IPCW=partDSA(x=x,y=Surv(y,cens),x.test=x.test,y.test=Surv(y.test,cens.test),control=DSA.control(vfold=5, MPD=.05, minsplit=40,minbuck=15, loss.function="IPCW",wt.method="KM",missing="no",cut.off.growth=4))

<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>
<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>
<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>
<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>
<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>
<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>

> model.Cox.IPCW=partDSA(x=x,y=Surv(y,cens),x.test=x.test,y.test=Surv(y.test,cens.test),control=DSA.control(vfold=5, MPD=.05, minsplit=40, minbuck=15, loss.function="IPCW",wt.method="Cox",missing="no",cut.off.growth=4))

<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>
<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>
<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>
<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>
<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>
<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>

>
>
>
>

2.2. Output

The output shown below is similar to that for the usual partDSA model. In both cases the
minimum error plus one standard error occurs for the model with two partitions, and we can
see that the structure of the model recovers the underlying structure of the simulated data
with cutpoints close to those of 50 and 75. The coefficients represent the predicted log of
the survival time. In both models we see that the first partition has a much lower survival
time than does the second partition. Therefore those observations in the first partition are
predicted to be at a higher risk. This is in accordance with the data set-up.

Karen Lostritto, Annette M. Molinaro, Stephen Weston 5

> model.KM.IPCW

partDSA object
partitions mean CV error sd CV error test risk
1 2.858005 0.747800 2.538029
2 1.347206 0.324538 1.528269
3 1.378447 0.344687 1.589107
4 1.353857 0.356251 1.651733

Outcome:
Best of 1 partitions:

Part.1
0.174

Best of 2 partitions:
Part.1 Part.2
-1.772 0.973

Best of 3 partitions:
Part.1 Part.2 Part.3
-1.039 0.973 -2.027

Best of 4 partitions:
Part.1 Part.2 Part.3 Part.4
-1.039 0.973 -1.363 -2.309

Best 2 partitions
Partition 1 [of 2]:

(X1 <= 50.000000) && (X2 <= 75.000000)
Partition 2 [of 2]:

(50.000000 < X1)
(X1 <= 50.000000) && (75.000000 < X2)

Best 3 partitions
Partition 1 [of 3]:

(X1 <= 19.000000) && (X2 <= 75.000000)
Partition 2 [of 3]:

(50.000000 < X1)
(X1 <= 50.000000) && (75.000000 < X2)

Partition 3 [of 3]:
(19.000000 < X1 <= 50.000000) && (X2 <= 75.000000)

Best 4 partitions
Partition 1 [of 4]:

(X1 <= 19.000000) && (X2 <= 75.000000)
Partition 2 [of 4]:

(50.000000 < X1)
(X1 <= 50.000000) && (75.000000 < X2)

Partition 3 [of 4]:
(19.000000 < X1 <= 50.000000) && (X2 <= 75.000000) && (X4 <= 25.000000)

Partition 4 [of 4]:
(19.000000 < X1 <= 50.000000) && (X2 <= 75.000000) && (25.000000 < X4)

6 partDSA

Variable importance matrix:
COG=1 COG=2 COG=3 COG=4

X1 0 2 3 4
X2 0 2 3 4
X3 0 0 0 0
X4 0 0 0 2
X5 0 0 0 0

> model.Cox.IPCW

partDSA object
partitions mean CV error sd CV error test risk
1 3.139255 1.483986 2.623929
2 1.573802 0.807281 1.560962
3 1.630050 0.808325 1.618819
4 1.591620 0.758062 1.684185

Outcome:
Best of 1 partitions:

Part.1
-0.186

Best of 2 partitions:
Part.1 Part.2
-1.816 0.777

Best of 3 partitions:
Part.1 Part.2 Part.3
-1.066 0.777 -2.07

Best of 4 partitions:
Part.1 Part.2 Part.3 Part.4
-1.066 0.777 -1.381 -2.358

Best 2 partitions
Partition 1 [of 2]:

(X1 <= 50.000000) && (X2 <= 75.000000)
Partition 2 [of 2]:

(50.000000 < X1)
(X1 <= 50.000000) && (75.000000 < X2)

Best 3 partitions
Partition 1 [of 3]:

(X1 <= 19.000000) && (X2 <= 75.000000)
Partition 2 [of 3]:

(50.000000 < X1)
(X1 <= 50.000000) && (75.000000 < X2)

Partition 3 [of 3]:
(19.000000 < X1 <= 50.000000) && (X2 <= 75.000000)

Best 4 partitions

Karen Lostritto, Annette M. Molinaro, Stephen Weston 7

Partition 1 [of 4]:
(X1 <= 19.000000) && (X2 <= 75.000000)

Partition 2 [of 4]:
(50.000000 < X1)
(X1 <= 50.000000) && (75.000000 < X2)

Partition 3 [of 4]:
(19.000000 < X1 <= 50.000000) && (X2 <= 75.000000) && (X4 <= 25.000000)

Partition 4 [of 4]:
(19.000000 < X1 <= 50.000000) && (X2 <= 75.000000) && (25.000000 < X4)

Variable importance matrix:
COG=1 COG=2 COG=3 COG=4

X1 0 2 3 4
X2 0 2 3 4
X3 0 0 0 0
X4 0 0 0 2
X5 0 0 0 0

3. Brier Weighting Scheme
In contrast to the IPCW method shown below, Brier allows for some censored observations
to be included directly into the loss function. In order to do this, Brier selects a specific time
point t* (or several time points) and evaluates whether an observation has had the event by
this time point. For uncensored observations, an observation is assigned a 0 if the observation
has experienced the event by t* and a 1 if the observation has not experienced the event
by t*. Observations censored past the t* will receive an outcome of a 1 because they have
not experienced the event by t*. Observations censored before t* cannot be included into
the loss function directly because we are unsure as to whether they have experienced the
event by t*. Unlike in IPCW where the predicted outcome is a survival time, in Brier, the
predicted outcome is a probability of not having experienced the event by t*. The weights
are found using all observations, censored and uncensored, with the Kaplan Meier method.
In the partDSA function, we still provide the same outcome (Surv(y,cens)) and we specify
the loss function to be "Brier". We can select a single value for t* or a vector of values for t*
such that the sum of the loss for each t* value is minimized. Note that selecting a vector of
values for t* will increase the running time. If no t* value is selected, the default t* will be
the median of the observed times.

3.1. Simulation Code

A similar covariate set-up will be applied for the second multivariate simulation in Lostritto
et al. (2011). The corresponding low signal simulation replaces the 4 in the theta definition
with a 1. The code is shown below

> tr.n=250
> ts.n=5000
> p=5

8 partDSA

> C_level=0.3
> set.seed(1)
> library(VGAM)
> x=matrix(NA,tr.n,p)
> for (j in 1:p){
+ x[,j]=runif(tr.n)
+ }
> x=data.frame(x)
> names(x)=c(paste("X",1:p,sep=""))
> x.test=matrix(NA,ts.n,p)
> for (j in 1:p){
+ x.test[,j]=runif(ts.n)
+ }
> x.test=data.frame(x.test)
> names(x.test)=c(paste("X",1:p,sep=""))
> theta=4*as.numeric(x[,1]<=.5 | x[,2]>.5)
> psi=exp(theta)
> shape=0
> scale=1/psi
> location=0
> time=data.frame(rgpd(tr.n,location, scale,shape))
> group2=which(scale==unique(scale)[1])
> group1=which(scale==unique(scale)[2])
> theta=4*as.numeric(x.test[,1]<=.5 | x.test[,2]>.5)
> psi=exp(theta)
> shape=0
> scale.test=1/psi
> location=0
> time.test=rgpd(ts.n,location, scale.test,shape)
> level1=0
> level2=0
> cens.time=NULL
> upper1=3.5
> upper2=.1
> while((abs(C_level-level1)>.02)|(abs(C_level-level2)>.02)){
+
+ cens1.time=runif(length(group1),0,upper1)
+ cens2.time=runif(length(group2),0,upper2)
+
+ cens1=apply(cbind(cens1.time,time[group1,]),1,which.min)-1
+ cens2=apply(cbind(cens2.time,time[group2,]),1,which.min)-1
+
+ level1=1-sum(cens1)/length(cens1)
+ level2=1-sum(cens2)/length(cens2)
+ if(abs(level1-C_level)>.1){ upper1=ifelse(level1>C_level,upper1+.1,upper1-.05)}
+ if(abs(level2-C_level)>.1){upper2=ifelse(level2>C_level,upper2+.01,upper2-.01)}
+

Karen Lostritto, Annette M. Molinaro, Stephen Weston 9

+ }
> if(C_level==0){
+ y0=time[,1]
+ cens0=rep(1,tr.n)
+ }else{
+ cens.time[group1]=cens1.time
+ cens.time[group2]=cens2.time
+ y0=apply(cbind(cens.time,time),1,min)
+ cens0=apply(cbind(cens.time,time),1,which.min)-1
+ }
> L = quantile(y0,.95)
> y = pmin(y0,L)
> cens = cens0
> cens[y0 > y] = 1
> y.new=y
> y=log(y)
> y.new.test <- time.test
> y.test=log(time.test)
> cens.test=rep(1,ts.n)
> wt=rep(1,tr.n)
> wt.test=rep(1,ts.n)
> detach(package:VGAM)
> model1.Brier=partDSA(x=x,y=Surv(y,cens),x.test=x.test,y.test=Surv(y.test,cens.test),control=DSA.control(vfold=5, MPD=.05, minsplit=40, minbuck=15, loss.function="Brier",missing="no",cut.off.growth=4,brier.vec=-3.9237))

<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>
<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>
<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>
<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>
<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>
<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>

> model2.Brier=partDSA(x=x,y=Surv(y,cens),x.test=x.test,y.test=Surv(y.test,cens.test),control=DSA.control(vfold=5, MPD=.05, minsplit=40, minbuck=15, loss.function="Brier",missing="no",cut.off.growth=4,brier.vec=quantile(y,c(.25,.5,.75))))

<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>
<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>
<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>
<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>
<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>
<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>

>

3.2. Output

If we examine the Brier models and look at the minimum plus one standard error of the
cross-validated error, we would select a model of size two. We see that both models yield a

10 partDSA

model similar to the original data structure. However, now note that the predicted outcome
is a probability, i.e. between 0 and 1, of not having had the event by t*. Therefore, those
observations in partition 2 are less likely to experience the event by t* which is in line with
the results found with the IPCW models above where observations in partition 2 had higher
survival times.

> model1.Brier

partDSA object
partitions mean CV error sd CV error test risk
1 0.245072 0.007471 0.255346
2 0.119925 0.028077 0.179881
3 0.127091 0.026782 0.190401
4 0.132840 0.032819 0.198227

Outcome:
Best of 1 partitions:

Part.1
0.575

Best of 2 partitions:
Part.1 Part.2
0.269 1

Best of 3 partitions:
Part.1 Part.2 Part.3
0.319 1 0

Best of 4 partitions:
Part.1 Part.2 Part.3 Part.4
0.244 1 0 0.53

Best 2 partitions
Partition 1 [of 2]:

(X1 <= 0.507642)
(0.507642 < X1) && (0.498515 < X2)

Partition 2 [of 2]:
(0.507642 < X1) && (X2 <= 0.498515)

Best 3 partitions
Partition 1 [of 3]:

(X1 <= 0.507642) && (X3 <= 0.770225)
(0.507642 < X1) && (0.498515 < X2)

Partition 2 [of 3]:
(0.507642 < X1) && (X2 <= 0.498515)

Partition 3 [of 3]:
(X1 <= 0.507642) && (0.770225 < X3)

Best 4 partitions
Partition 1 [of 4]:

(X1 <= 0.507642) && (X3 <= 0.770225) && (X4 <= 0.699729)
(0.507642 < X1) && (0.498515 < X2)

Karen Lostritto, Annette M. Molinaro, Stephen Weston 11

Partition 2 [of 4]:
(0.507642 < X1) && (X2 <= 0.498515)

Partition 3 [of 4]:
(X1 <= 0.507642) && (0.770225 < X3)

Partition 4 [of 4]:
(X1 <= 0.507642) && (X3 <= 0.770225) && (0.699729 < X4)

Variable importance matrix:
COG=1 COG=2 COG=3 COG=4

X1 0 2 3 4
X2 0 2 2 2
X3 0 0 2 3
X4 0 0 0 2
X5 0 0 0 0

> model2.Brier

partDSA object
partitions mean CV error sd CV error test risk
1 0.622632 0.037903 0.614225
2 0.350140 0.020723 0.381562
3 0.385011 0.043662 0.403945
4 0.389357 0.045950 0.415171

Outcome:
Best of 1 partitions:

Part.1
0.376

Best of 2 partitions:
Part.1 Part.2
0 0.802

Best of 3 partitions:
Part.1 Part.2 Part.3
0 0.802 0

Best of 4 partitions:
Part.1 Part.2 Part.3 Part.4
0 0.802 0 0

Best 2 partitions
Partition 1 [of 2]:

(X1 <= 0.507642)
(0.507642 < X1) && (0.502251 < X2)

Partition 2 [of 2]:
(0.507642 < X1) && (X2 <= 0.502251)

Best 3 partitions
Partition 1 [of 3]:

(X1 <= 0.507642) && (X3 <= 0.770225)

12 partDSA

(0.507642 < X1) && (0.502251 < X2)
Partition 2 [of 3]:

(0.507642 < X1) && (X2 <= 0.502251)
Partition 3 [of 3]:

(X1 <= 0.507642) && (0.770225 < X3)
Best 4 partitions

Partition 1 [of 4]:
(X1 <= 0.507642) && (X3 <= 0.770225) && (X4 <= 0.527782)
(0.507642 < X1) && (0.502251 < X2)

Partition 2 [of 4]:
(0.507642 < X1) && (X2 <= 0.502251)

Partition 3 [of 4]:
(X1 <= 0.507642) && (0.770225 < X3)

Partition 4 [of 4]:
(X1 <= 0.507642) && (X3 <= 0.770225) && (0.527782 < X4)

Variable importance matrix:
COG=1 COG=2 COG=3 COG=4

X1 0 2 3 4
X2 0 2 2 2
X3 0 0 2 3
X4 0 0 0 2
X5 0 0 0 0

4. Data Example
We now demonstrate the application of both partDSA with the IPCW weighting scheme
and the Brier weighting scheme on the German Breast Cancer Study Data (from TH.data
package in R). The goal in this dataset is to predict the survival time from the covariates: hor-
mone therapy, age, menopausal status, tumor size, tumor grade, positive nodes, progesterone
receptor, and estrogen receptor.

> data("GBSG2", package = "TH.data")
> set.seed(1)
> data(GBSG2)
> dataset=GBSG2
> y.new=dataset$time
> y.new=ifelse(dataset$time>2000,2000,dataset$time)
> y=log(y.new)
> cens=dataset$cens
> cens[which(dataset$time>2000)]=1
> x=dataset[,c(1:8)]
> brier.vec=median(y)
> set.seed(1)
> model.IPCW=partDSA(x=x,y=Surv(y,cens),control=DSA.control(vfold=5, cut.off.growth=5,MPD=.01,minsplit=50,minbuck=20,loss.function="IPCW",wt.method="KM"))

Karen Lostritto, Annette M. Molinaro, Stephen Weston 13

<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>
<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>
<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>
<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>
<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>
<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>

> set.seed(1)
> model.Brier=partDSA(x=x,y=Surv(y,cens),control=DSA.control(vfold=5, cut.off.growth=5,MPD=.01,minsplit=50,minbuck=20,loss.function="Brier",brier.vec=brier.vec))

<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>
<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>
<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>
<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>
<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>
<simpleError in FUN(X[[i]], ...): n == length(y)%/%2 is not TRUE>

> model.IPCW

partDSA object
partitions mean CV error sd CV error test risk
1 0.492775 0.064606 0.492555
2 0.407684 0.058724 0.387659
3 0.417740 0.082927 0.377856
4 0.420860 0.090450 0.373843
5 0.423927 0.093127 0.372322

Outcome:
Best of 1 partitions:

Part.1
7.059

Best of 2 partitions:
Part.1 Part.2
7.21 6.363

Best of 3 partitions:
Part.1 Part.2 Part.3
7.21 6.551 6.069

Best of 4 partitions:
Part.1 Part.2 Part.3 Part.4
7.21 6.678 6.069 6.259

Best of 5 partitions:
Part.1 Part.2 Part.3 Part.4 Part.5
7.21 6.678 5.915 6.259 6.211

Best 2 partitions
Partition 1 [of 2]:

(pnodes <= 4.000000)

14 partDSA

(4.000000 < pnodes) && (28.000000 < progrec)
Partition 2 [of 2]:

(4.000000 < pnodes) && (progrec <= 28.000000)
Best 3 partitions

Partition 1 [of 3]:
(pnodes <= 4.000000)
(4.000000 < pnodes) && (28.000000 < progrec)

Partition 2 [of 3]:
(tgrade is in {I, II}) && (4.000000 < pnodes) && (progrec <= 28.000000)

Partition 3 [of 3]:
(tgrade is III) && (4.000000 < pnodes) && (progrec <= 28.000000)

Best 4 partitions
Partition 1 [of 4]:

(pnodes <= 4.000000)
(4.000000 < pnodes) && (28.000000 < progrec)

Partition 2 [of 4]:
(tgrade is in {I, II}) && (4.000000 < pnodes) && (progrec <= 28.000000) && (estrec <= 22.000000)

Partition 3 [of 4]:
(tgrade is III) && (4.000000 < pnodes) && (progrec <= 28.000000)

Partition 4 [of 4]:
(tgrade is in {I, II}) && (4.000000 < pnodes) && (progrec <= 28.000000) && (22.000000 < estrec)

Best 5 partitions
Partition 1 [of 5]:

(pnodes <= 4.000000)
(4.000000 < pnodes) && (28.000000 < progrec)

Partition 2 [of 5]:
(tgrade is in {I, II}) && (4.000000 < pnodes) && (progrec <= 28.000000) && (estrec <= 22.000000)

Partition 3 [of 5]:
(age <= 51.000000) && (tgrade is III) && (4.000000 < pnodes) && (progrec <= 28.000000)

Partition 4 [of 5]:
(tgrade is in {I, II}) && (4.000000 < pnodes) && (progrec <= 28.000000) && (22.000000 < estrec)

Partition 5 [of 5]:
(51.000000 < age) && (tgrade is III) && (4.000000 < pnodes) && (progrec <= 28.000000)

Variable importance matrix:
COG=1 COG=2 COG=3 COG=4 COG=5

horTh 0 0 0 0 0
age 0 0 0 0 2
menostat 0 0 0 0 0
tsize 0 0 0 0 0
tgrade 0 0 2 3 4
pnodes 0 2 3 4 5
progrec 0 2 3 4 5
estrec 0 0 0 2 2

> model.Brier

Karen Lostritto, Annette M. Molinaro, Stephen Weston 15

partDSA object
partitions mean CV error sd CV error test risk
1 0.227673 0.006436 0.227808
2 0.211661 0.010517 0.195658
3 0.213208 0.012065 0.192379
4 0.213614 0.015865 0.191082
5 0.216469 0.017301 0.190160

Outcome:
Best of 1 partitions:

Part.1
0.649

Best of 2 partitions:
Part.1 Part.2
0.738 0.287

Best of 3 partitions:
Part.1 Part.2 Part.3
0.738 0.209 0.5

Best of 4 partitions:
Part.1 Part.2 Part.3 Part.4
0.738 0.377 0.5 0.156

Best of 5 partitions:
Part.1 Part.2 Part.3 Part.4 Part.5
0.738 0.377 0.5 0.251 0.067

Best 2 partitions
Partition 1 [of 2]:

(pnodes <= 5.000000)
(5.000000 < pnodes) && (53.000000 < progrec)

Partition 2 [of 2]:
(5.000000 < pnodes) && (progrec <= 53.000000)

Best 3 partitions
Partition 1 [of 3]:

(pnodes <= 5.000000)
(5.000000 < pnodes) && (53.000000 < progrec)

Partition 2 [of 3]:
(tsize <= 45.000000) && (5.000000 < pnodes) && (progrec <= 53.000000)

Partition 3 [of 3]:
(45.000000 < tsize) && (5.000000 < pnodes) && (progrec <= 53.000000)

Best 4 partitions
Partition 1 [of 4]:

(pnodes <= 5.000000)
(5.000000 < pnodes) && (53.000000 < progrec)

Partition 2 [of 4]:
(tsize <= 21.000000) && (5.000000 < pnodes) && (progrec <= 53.000000)

Partition 3 [of 4]:
(45.000000 < tsize) && (5.000000 < pnodes) && (progrec <= 53.000000)

16 partDSA

Partition 4 [of 4]:
(21.000000 < tsize <= 45.000000) && (5.000000 < pnodes) && (progrec <= 53.000000)

Best 5 partitions
Partition 1 [of 5]:

(pnodes <= 5.000000)
(5.000000 < pnodes) && (53.000000 < progrec)

Partition 2 [of 5]:
(tsize <= 21.000000) && (5.000000 < pnodes) && (progrec <= 53.000000)

Partition 3 [of 5]:
(45.000000 < tsize) && (5.000000 < pnodes) && (progrec <= 53.000000)

Partition 4 [of 5]:
(age <= 53.000000) && (21.000000 < tsize <= 45.000000) && (5.000000 < pnodes) && (progrec <= 53.000000)

Partition 5 [of 5]:
(53.000000 < age) && (21.000000 < tsize <= 45.000000) && (5.000000 < pnodes) && (progrec <= 53.000000)

Variable importance matrix:
COG=1 COG=2 COG=3 COG=4 COG=5

horTh 0 0 0 0 0
age 0 0 0 0 2
menostat 0 0 0 0 0
tsize 0 0 2 3 4
tgrade 0 0 0 0 0
pnodes 0 2 3 4 5
progrec 0 2 3 4 5
estrec 0 0 0 0 0

The models created using the IPCW and Brier methods both have two partitions involving
the variables progesterone receptor and number of positive nodes. These models show the
ability of partDSA to elucidate complex relationships among covariates and survival time.

References

Lostritto K, Strawderman RL, Molinaro AM (2011). “partDSA: A Partitioning Dele-
tion/Substitution/Addition Algorithm for Creating Survival Risk Groups.” Biometrics.

Molinaro AM, Lostritto K, van der Laan MJ (2010). “partDSA: Dele-
tion/Substitution/Addition Algorithm for Partitioning the Covariate Space in Prediction.”
Bioinformatics. Doi: 10.1093/bioinformatics/btq142.

Molinaro AM, Lostritto K, Weston S (2009). “partDSA: Partitioning using deletion, substi-
tution, and addition moves.” http://cran.r-project.org/web/packages/partDSA.

Affiliation:
Givenname Familyname
Affiliation

http://cran.r-project.org/web/packages/partDSA

Karen Lostritto, Annette M. Molinaro, Stephen Weston 17

Address, Country
E-mail: name@address
URL: https://link/to/webpage/

mailto:name@address
https://link/to/webpage/

	Introduction
	IPCW Weighting Scheme
	Simulation Code
	Output

	Brier Weighting Scheme
	Simulation Code
	Output

	Data Example

